

Muhammad Sahimi and Theodore Tsotsis

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1211

Outline

- Introduction
- Membrane synthesis
- Membrane characterization
- Transport studies
- Future work

Introduction

- IGCC plants show promise for environmentally-benign power generation. In these plants coal is gasified to synthesis gas, which is then processed in a water gas-shift reactor (WGSR) to produce H₂ for clean-power generation.
- WGSR is a dual-reactor system, the first reactor (HTS) operating at high temperatures, to attain high reaction rates, followed by a second lower-temperature reactor (LTS), which benefits from increased equilibrium conversions at low temperatures.
- The WGSR exit stream contains H₂, CO₂, H₂O and other minor species (e.g., CO). For use in fuel cells (and potentially for CO₂ capture/sequestration), CO₂ is separated using amine absorption or PSA. Both processes are, however, energy- and capital-intensive, and so is the WGSR.

- Our team proposes, instead, a novel membrane reactor (WGSMR), which integrates the WGS and H₂ and/or CO₂ separation steps in a single unit through the use of high temperature membranes.
- The WGSMR has many advantages over the conventional technology. Key to the success of the WGSMR is developing membranes capable of operating in the WGS environment.

4

What is a Hydrotalcite?

LDH (Layered Double Hydroxide)

$$[M_{1-x}^{(II)}M_{x}^{(III)}(OH)_{2}]^{x+}[X_{x/m}^{m-}nH_{2}O]$$

- M^(II):Mg, Mn, Fe, Co, Ni, Cu, Zn, Ga
- M^(III): Al, Cr, Mn, Fe, Co, Ni, La
- Anion: m-valence inorganic (CO₃²⁻, OH⁻, NO₃⁻), heteropolyacid, organic anion acid

 $M^{(III)}/M^{(II)}+M^{(III)}$

 $0.2 \le x \le 0.33$

Various Applications

catalysts, catalyst supports, ion exchange materials, adsorbents, medical applications

Membrane Synthesis

- Two different types of membranes have been prepared: Large area membranes and micromembranes.
- For the large area membranes we utilized as supports macroporous hydrotalcite discs, and alumina tubes and discs.

• For the micromembranes we utilized as supports silicon wafers and perforated stainless steel disks.

Membrane Synthesis, cont.

- A number of different techniques have been used for membrane preparation including:
 - Dip-coating using commercial powders and hydrotalcites prepared by our group.
 - Dip-coating using sulfate as a binder
 - Vacuum suction
 - Electrophoretic deposition (EPD)

Hydrotalcites Used in Membrane Preparation

	Ma/Al ratio from	Synthesis Conditions			
HT material	Mg/Al ratio from ICP-MS	Mg/Al Molar Ratio	Reaction Conditions.		
Sasol Mg50	1.29				
Sasol Mg70	3.0				
Sasol Mg70D	3.0	-	4.6% lactic acid added		
Sasol Mg70DS ^b	3.0	-	Ball-milled Sasol Mg70		
Aldrich HT	2.19	-	-		
USC HT 1	2.89	2.9	Stirring 24 h, at 333K		
USC HT 2	3.1	3.0	Stirring 24 h, at 333K		

4

Hydrotalcite Synthesis

We use the co-precipitation method

XRD Spectra

Mg70D HT

TGA Thermograms

USC HT

Mg70D HT

FT-IR Spectra

USC HT

Mg70D HT

4

Electrophoretic Deposition (EPD)

Electrophoresis is the process whereby colloids travel through a fluid in response to an applied electric field.

$$M = \int_{0}^{t} aAc\mu E.dt$$

$$\mu = \frac{ZEV}{4\pi L\eta}$$

M=mass deposited in time t

t = deposition time

a = co-efficient representing the fraction of particles

A = surface area of the electrode

C = particle concentration in the suspension (kg/m³)

 μ = electrophoretic mobility (m²/Vs)

E = electric field (V/m)

Z: zeta potential, V: the applied voltage

E : the dielectric constant of the suspending medium

 η : the viscosity of the suspension

Schematic of the EPD System

- Deposition parameters: discharge voltage, time, concentration, pH
- Supports: α alumina (tube, disc), stainless steel porous discs (0.2 μ m)
- HTc used: Mg 70DS, USC HT

Tube Type

Disc Type

Micromembranes, Why?

- Easier to prepare crack-free for fundamental investigations
- Potential application in micro fuel-cells and microreactors

Micro Heat Exchanger

Micro-reactor for Methanol Reforming

4

Micromembranes, cont.

Silicon-based microchannel membrane

Micromembranes, cont.

Top view (X100)

Cross-section view (X100)

Si-Wafer Supported Micromembranes, Fabrication Process

Photolithography step

Etching step

HT Coating/removing support silicon layer

No	Intermedia te layer	Coating method	Conditions
1		Colloidal HT coating drop-wise by a micropipette	Dry at 110°C for 12 h
2	None	Seed deposition followed by hydrothermal aging	Dry at 110°C for 12 h (after seed deposition) 160 °C for 24 h (hydrothermal aging)
3	γ-alumina	Colloidal HT coating drop-wise by a micropipette	Dry at 110°C for 12 h

Si Micromembranes, cont.

X 10 K

HT membrane on Si with alumina sublayer, Cross-section

HT membrane on Si with alumina sublayer Surface view)

X 20 K

Stainless Steel Micromembranes

Top surface X100

Top surface X20K

Permeation Apparatus

FM: Flow Meter P: Pressure Gauge TC: Temperature Controller NV: Neddle Valve

FC: Flow Controller (Condyne)

SP: Synringe Pump

Micromembranes

\triangle **P=30** psi, 25°C

Permenace : $N_2 < CO_2$

Membranes Prepared with Sulfate Binder

HT source	Coating conditions	Pressure drop (psi)	CO_2	N_2	N ₂ /CO ₂
	Dip-coating,	30	2.65E-08	3.37E-08	1.27
	3 layers	40	3.11E-08	3.38E-08	1.09
Mg50	I: 4 20:	30	1.60E-07	1.46E-07	0.91
Wig50	In-situ 30min	40	1.82E-07	1.65E-07	0.90
	In-situ	30	3.43E-07	3.07E-07	0.90
	3 h	40	3.96E-07	3.56E-07	0.90
Mg70D	Dip-coating, 1 layer	30	1.54E-06	1.72E-06	1.12
Mg/0D	Dip-coating, 3 layers	30	5.63E-07	6.93E-07	1.23

EPD Membranes

Nie			EPD c	onditio	ns	N ₂ Permeance (mol/m ² sPa)		N ₂ /CO ₂	
Na me	Support	voltage				Δ	.P	Δ	P
		/coating times	Time	рН	Solution	30 psi	40 psi	30 psi	40 psi
E1	α -Al $_2$ O $_3$ Tube	1V/1	24 h	12	Synth. HT	1.5×10 ⁻⁷	1.6×10 ⁻⁷	1.16	1.05
E2	γ-Al ₂ O ₃ Tube	2V/4	24h	12	Synth. HT	2.7×10 ⁻⁷	2.9×10 ⁻⁷	1.13	1.17
E3	α -Al ₂ O ₃ disc	2V/3	24h	12	Synth. HT	2.6×10 ⁻⁷	3.0×10 ⁻⁷	1.13	1.03
E4	S-5a	1V/1	1 h	7	Mg70DS ^b	2.1×10 ⁻⁷	-	1.28	-
E5	HT disc	1V/1	3h	7	Mg70DS ^b	6.6×10 ⁻⁷	7.0×10 ⁻⁷	1.33	1.29
E6	α -Al ₂ O ₃ Tube	1V/1	1.5h	7	Mg70DSb	5.4×10 ⁻⁷	-	0.83	-
E7	S-5°	20V/3	1h	7	Mg70DS ^b	2.7×10 ⁻⁷	3.8×10 ⁻⁷	0.75	0.88
E8	S-5°	20V/2	1h	7	Mg70DSb	2.0×10 ⁻⁷	-	0.86	-

Membranes Prepared by Vacuum Suction

	Permeance × 10 ⁻ ⁸ (mol/m ² s Pa)		Permselectivity						
Gas			He/gas			N ₂ /gas			
(MW))	(MW))		Ideal Knudsen	Experimental Result		Ideal Knudse	Experimenta l Result		
	30 psi	40 psi	value	30 psi	40 psi	n value	30 psi	40 psi	
He (4)	5.78	5.38	1.0	1.0	1.0	0.38	0.22	0.25	
N ₂ (28)	1.28	1.36	2.65	4.52	3.96	1.0	1.0	1.0	
Ar (40)	0.95	0.96	3.16	6.08	5.60	1.20	1.35	1.42	
CO ₂ (44)	0.67	0.66	3.32	8.63	8.15	1.25	1.91	2.06	

Membranes Prepared by Vacuum Suction, cont

Temp.	Perme	eance × 10) ⁻⁸ (mol/	m ² s Pa)	Permselectivity				
(°C)	Не	N_2	Ar	CO_2	He/CO ₂	He/Ar	He/N ₂	N ₂ /CO ₂	N ₂ /Ar
25	9.04	1.96	1.49	1.08	8.35	6.09	4.61	1.81	1.32
80	6.62	1.81	0.67	1.10	6.02	9.94	3.66	1.64	2.71
150	4.78	1.08	0.85	0.71	6.78	5.63	4.41	1.54	1.28

Mixed-gas Permeation Tests

Mombrono	Number of Coatings	Separation Factor(N ₂ /CO ₂)			
Membrane	Number of Coatings	Single gas	Gas Mixture		
Dipcoating a by 1.25 wt% Mg70D solution	4	1.3	1.4		
Dipcoating ^a by 5wt% Mg70D solution	2	1.27	1.4		
EPD E#6 ^b	EPD 1 st coating	0.83	0.72		

 ΔP =30psi, R.T., Feed gas N₂:CO₂ = 0.4:0.6, a: α -alumina tube, b: Feed gas N₂:CO₂ =0.7:0.3

Mixed-gas Permeation Tests

Temp.(K)	Permeance ×10	Separation Factor (CO ₂ /N ₂)	
	CO_2	N_2	(00)2112)
298 K	4.38	3.15	1.39
423 K	4.69	2.86	1.64
473 K	5.05	2.49	2.03

 \triangle P= 30psi, Feed gas N₂:CO₂=0.7:0.3

Conclusions

- A number of techniques have been developed and studied for the preparation of HT membranes.
- Different membranes have been developed and tested for their permeation characteristics towards single gases and mixtures of gases.
- A number of these membranes were shown to be nanoporous, and some of them show permselectivity towards CO₂.

Acknowledgement

The support of the U.S. Department of Energy is gratefully acknowledged.